Полевой шпат характеристика для детей. Полевой шпат: происхождение, разновидности и свойства горной породы. Области применения минералов шпатов

Легко раскалывающиеся на пластины; "полевой" — ввиду частого нахождения обломков на шведских пашнях, располагающихся на моренных отложениях, богатых разрушенным материалом гранитов * а. feldspars; н. Feldspate, Feldspat-Familie; ф. feldspaths; и. feldespatos) — семейство минералов, каркасные алюмосиликаты Ca, Na, К, Ba. Подразделяются на 3 группы: калиево-натриевые (щелочные), кальциево-натриевые (плагиоклазы) и очень редкие калиево-бариевые полевые шпаты. Щелочные полевые шпаты и плагиоклазы — наиболее распространённые породообразующие минералы верхней части земной коры; на их долю приходится около 50% её массы (60-65% объёма). Группы щелочных полевых шпатов и плагиоклазов представлены сериями высокотемпературных твёрдых растворов: ортоклаз (Or) — альбит (Ab) и альбит (Ab) — анортит (An). Взаимная смесимость обеих серий весьма ограниченная.

Все природные плагиоклазы триклинны; среди калиево-натриевых полевых шпатов существуют как триклинные (микроклин), так и моноклинные (санидин, ортоклаз) модификации. Облик кристаллов полевых шпатов короткостолбчатый, у плагиоклазов чаще уплощённый (до пластинчатого у альбита).

Полевые шпаты обычно образуют изометричные или удлинённые (лейстовидные) зёрна в ; кристаллы встречаются главным образом в пустотах пегматитов или в альпийского жилах . Для триклинных полевых шпатов характерно полисинтетическое двойникование; моноклинные полевые шпаты образуют двойники прорастания (карлсбадские, манебахские, бавенские). Цвет белый, желтоватый, кремовый, бледно-розовый, иногда водяно-прозрачный, бесцветный (санидин, альбит). Характерны также алло-хроматические окраски, вызываемые высокодисперсными минеральными включениями: тёмно-серая или мясо-красная у щелочных полевых шпатов, тёмная до почти чёрной у основных плагиоклазов. Амазонит (разновидность микроклина) окрашен в зелёный или голубовато-зелёный цвет ввиду присутствия в его кристаллической решётке центров Pb+. Известны иризирующие щелочные полевые шпаты (лунный камень) и плагиоклазы (перистериты; лабрадор), а также авантюриновые полевые шпаты с мельчайшими чешуйчатыми включениями гематита или гётита, вызывающими золотистое мерцание (солнечный камень). Блеск стеклянный. Спайность совершенная в двух направлениях, менее совершенная — в третьем. Твердость 6-6,5. Плотность 2550-2750, у цельзиана — BaAl 2 Si 2 О 8 — до 3400 кг/м 3 . Хрупкие .

Полевые шпаты — главные составные части большинства магматических и метаморфических пород, присутствуют в составе лунных пород и метеоритов. Щелочные полевые шпаты часто образуются гидротермическим и метасоматическим путём, в результате процессов альбитизации, микроклинизации, фенитизации и др. При интенсивном воздействии водных растворов подвергаются гидролизу с образованием серицита или минералов группы каолинита: кислые плагиоклазы легко поддаются серицитизации , а основные — соссюритизации либо замещаются , скаполитом , цеолитами , хлоритом , кальцитом . При грейзенизации по полевым шпатам развиваются мусковит , топаз , флюорит , кварц . В корах выветривания все полевые шпаты переходят в различные глинистые минералы .

Полевые шпаты имеют большое практическое значение: чистые ортоклаз и микроклин — ценное керамического сырьё; полевошпатовые продукты, получаемые попутно при обогащении редкометалльных руд , используются в стекольной, абразивной и электротехнической промышленности. Лунный камень относится к драгоценным; амазонит, иризирующие плагиоклазы и авантюриновые полевые шпаты — к поделочным камням . При попутном получении полевых шпатов обогащение производится методами магнитной сепарации или флотации с магнитной сепарацией . Схемы флотации включают измельчение , обесшламливание , удаление слюд и кварца, активационную обработку плавиковой кислотой или полигидрофторидами (бифторид аммония, калия или натрия) и флотацию полевых шпатов катионными собирателями и смесью нефтяных масел при pH 2,5-3,5. Разделение

Одним из самых многоликих, принимающих различные образы минералов является всем знакомый полевой шпат. Он входит в а некоторые его обработанные разновидности считаются полудрагоценными камнями: лабрадор, "лунный" камень, амазонит. Различные его виды неспециалист ни за что не отнесет к одному и тому же минералу - настолько он многолик. Он отличается довольно значительной твердостью - 6 по

Полевой шпат издавна используется людьми. Например, секрет тончайшего и высококачественного состоит именно в том, что в его составе содержится вышеупомянутый минерал. Сейчас он применяется при производстве стекла и керамики - зачем заново изобретать колесо? Ну и более или менее декоративные его разновидности используются для различного рода украшений.

Минерал очень распространен: до 50% земной коры, так или иначе - полевой шпат.

Декоративные его разновидности встречаются немного реже, но в мире есть несколько крупных месторождений.

Минерал шунгит состоит из углерода и водорода. Его довольно легко перепутаться с углем, но шунгит не горит. Считается, что этот минерал обладает уникальными свойствами, даже сейчас из него изготавливают пирамиды, сферы, лечебные пасты, приспособления для массажа и, конечно, ювелирные украшения. В промышленности он применяется в качестве материала для фильтров.

Шунгиту приписывают многочисленные лечебные свойства. По заверениям литотерапевтов, благодаря своей уникальной он способен очищать воду, вылечить астму, аллергию, ожоги, болезни суставов. Многие считают, что он также имеет возможность защитить поэтому довольно часто в квартирах можно увидеть рядом с компьютерами шунгитовые пирамидки. Кто знает, может, это и не лишено рационального зерна. В мире открыто только одно крупное месторождение шунгита, и оно располагается в Карелии.

Или пирит - минерал желтого цвета с красивым металлическим блеском. Во времена так называемой золотой лихорадки он становился частой добычей неопытных старателей, за что был прозван "золотом дураков". Впрочем,

отличить пирит от золота довольно легко - его нельзя поцарапать ножом, зато сам он без усилий царапает стекло.

Древние приписывали этому минералу особые свойства, они верили, что в нем скрыта душа огня, что и отразилось в его названии. Эта вера подтверждалась способностью пирита высекать искры при соударении со стальным предметом. В современной же литотерапии он занимает почетное место. Считается, что этот минерал нормализует и гармонизирует все процессы в организме. Пириту приписываются самые разные свойства: от защиты человека от негативных воздействий до подталкивания его на довольно сомнительные поступки.

Мир минералов очень интересен: загадочный шунгит, пирит, который средневековые алхимики тщетно пытались превратить в золото, полевой шпат, одновременно повсеместно распространенный и довольно редкий. Как тут устоять и не увлечься минералогией?


Полевой шпат – минерал, известный обывателю более на слух, чем на вид и тем более на ощупь. Да ученые минерологи, отмечая бесконечное разнообразие силикатов, относимых к шпатам, досконально изучили не более десятка видов – и предпочитают оперировать другими, узкими терминами.

А ведь на долю полевых шпатов приходится половина массы земной коры и две трети ее объема! Многие из горных пород фактически являются разновидностями шпатов, смешанных с теми или иными минеральными добавками.

Слово, пришедшее из Швеции

Выражение «полевой шпат» представляет собой кальку с немецкого feldspat, где feld – это «поле», а spat – слоистый, трещиноватый, пластинчатый камень. Что любопытно, немецкий минералогический термин образовался из шведского наименования, потому как именно в Швеции – а вовсе не в Германии – сельскохозяйственные угодья, располагающиеся на старых моренах, буквально усеяны кусками пластинчатого камня.

Слово «спайность» в русской минералогии произрастает из шведо-немецких корней, и вообще-то должно бы произноситься как «шпатность». Для неподготовленного слушателя «спайность» звучит почти как «спаянность», хотя значения у «спайности» и «спаянности» диаметрально противоположны.

Некоторые из полевых шпатов красивы

Минерологи объединяют в группу шпатов великое множество минералов, различая их по элементному составу. Геммологи идут эмпирическим путем, выделяя из полевых шпатов камни, достойные стать украшением.

Любой из полевых шпатов теоретически бесцветен и невзрачен – как и положено соединениям кремния. Однако без примесей подобные минералы практически не встречаются, и потому многие из шпатов весьма привлекательны внешне.



Классификация полевых шпатов

По химическому составу полевые шпаты подразделяются на калиевые, калиево-бариевые и натриево-кальциевые, называемые еще плагиоклазами. Плагиоклазов много разных; геммологи же особо выделяют альбит, являющийся составной частью солнечного камня. Альбитовые кристаллы ценят за редкость.

Еще более редок минерал цельзиан – калиево-бариевый шпат, встречающийся в виде вкраплений в метаморфических массивах. Ювелирной ценности зеленый или зеленовато-коричневый цельзиан не имеет, поскольку непрозрачен, но как коллекционный материал ценится весьма высоко.

Происхождение полевых шпатов...

...исключительно магматическое. Преобладание полевого шпата в коре планеты – свидетельство ее бурного вулканического прошлого, осложненного масштабными космическими катастрофами. Кто знает, каким минеральным составом удивляла бы людей родная планета, если б не события, повлекшие образование Луны.

На Луне, кстати, полевого шпата так же много, как и на Земле. Многие метеориты тоже содержат полевой шпат.

Вследствие чрезвычайной распространенности минерала, его добыча ведется на всех континентах. Лучшие лабрадоры поступают на рынок из Канады и Гренландии – хотя немало камней хорошего качества дает и Украина, и Бразилия, и Индия. Прекрасный амазонит, окрашенный в чередующиеся бирюзовые и бежевые цвета, был найден в Южной Америке, но добывается на российском севере и в магматических обнажениях Прибайкалья.

История происхождения названия специально исследована Зензеном и Спенсером. Термин впервые введен Тиласом в 1740 г. - feldtspat, от шведского, feldt или fait (поле, пашня) и немецкого spath (пластина, брусок). В “Минералогии” Валлериуса предложен другой термин - feltspat, от шведского, felt (моренное поле, ледниковая долина) и spat (табличка, выколоток по спайности). В немецком переводе “Минералогии” Валлериуса (1750) термин видоизменен как feldspath (“полевой шпат”), а в английском (1772) как fieldspar. В результате их смешения появился современный термин - feldspar. Кроме того, во 2-м издании “Минералогии” Кирвана (1794) использован термин felspa, от немецкого fels (скала, горная порода), т.е. “породообразующий” шпат.

Реже используются термины: felspar (английский), feldspath (французский).

Химический состав

По химическому составу полевые шпаты представляют собой алюмосиликаты и состоят из окиси алюминия (Аl 2 O 3 ), Окиси калия (К 2 О), окиси натрия (Na 2 O) или из Аl 2 O 3 , Na 2 O и окиси кальция (СаО) в сочетании с двуокисью кремния (SiO 2 ).

Полевые шпаты - главные породообразующие минералы многих магматических, метаморфических и осадочных пород с химическим составом М[Т 4 O 8 ], где М - щелочные, М + = (Н, Li, Na, К, Rb, Cs, Tl, 4 ) + или щелочноземельные, M 2+ = (Са, Sr, Ва, Pb, Еn) 2+ катионы, а Т - Si 4+ или заменяющие его в бесконечном кремнекислородном каркасе (А1, В, Fe, Ga) 3+ , (Ge) 4+ , осуществляющие анионную функцию в [ТО] 4 -тетраэдрах, компенсирующие заряд М-катионов.

Разновидности

Полевые шпаты классифицируются по химическому составу, кристаллической структуре и структурному состоянию (Si/Al-упорядоченности), чем исчерпываются все их “структурно-химические разновидности”. Целесообразно выделять “минеральные виды”, их “разновидности” (по химическому составу, структурным модификациям, по морфологическим особенностям, физическим свойствам) и типы “блок-кристаллов”.

Полевые шпаты составляют 50-60 мае. % земной коры; они наряду с кварцем , оливином , слюдами, пироксенами и амфиболами относятся к наиболее распространенным породообразующим минералам. Их значение необычайно велико. Среди них выделяют калий-натриевые (щелочные) полевые шпаты, составляющие подгруппу ортоклаза, к которой относятся собственно ортоклаз, натриевый ортоклаз, микроклин, анортоклаз, санидин, адуляр, и известково-натриевые, или натриево-кальциевые, полевые шпаты (подгруппа плагиоклаза).

Форма нахождения в природе

Для всех полевых шпатов характерны двойники роста (срастания, прорастания), а также двойники превращения, возникающие в результате фазовых превращений в полевошпатовых блок-кристаллах.

В нормальных двойниках (закон грани) двойниковая ось перпендикулярна плоскости срастания, которая одновременно является двойниковой плоскостью и плоскостью симметрии двойника (обычно это наиболее распространенная грань). В параллельных двойниках (закон оси) двойниковая ось лежит в плоскости срастания двойника, которой может быть любая грань, лежащая в зоне, ребром которой служит данная двойниковая ось. В сложных двойниках (сложные законы) двойниковая ось перпендикулярна одному из ребер и лежит в какой-либо важной кристаллографической плоскости, которая является плоскостью срастания двойников.
Иногда различают карлсбадский-А (плоскость срастания - (010)) и карлсбадский-В (плоскость срастания - (100)) двойники . Аклиновый-А закон рассматривается как частный случай периклинового закона с плоскостью срастания (001), а Ала-А и Ала-В законы - как частный случай эстерельского закона с плоскостями срастания (001) и (010).
Наиболее часто встречаются двойники с плоскостью срастания (010). Для моноклинных Калиевых полевых шпатов наиболее характерны карлсбадские, манебахские и бавенские двойники, для триклинных (Калиевые полевые шпаты, Na-полевые шпаты, плагиоклазы) - альбитовые, а также периклиновые и карлсбадские. Альбитовые и периклиновые двойники в моноклинных полевых шпатах вследствие их симметрии невозможны (хороший диагностический признак). Наоборот, в триклинных полевых шпатах они обычны.
Положение “ромбического сечения” зависит от химического состава полевого шпата. По этой причине различается ориентировка альбит-периклиновых двойников в микроклине и в существенно натриевом щелочном полевом шпате - анортоклазе: под микроскопом в микроклине в разрезах по (010) наблюдаются только периклиновые двойники (под углом 83° к трещинам спайности по (001)), в разрезе по (100) - только альбитовые двойники (параллельно трещинам спайности по (010)), а в разрезе по (001) - решетка из альбитовых и периклиновых двойников под углом 90° (микроклиновая решетка)", в анортоклазе в разрезах по (010) также наблюдаются только периклиновые двойники, но они почти параллельны (под углом всего 2-5°) трещинам спайности по (001), в разрезе по (100) - решетка из альбитовых и периклиновых двойников под углом 90°, а в разрезе по (001) - только альбитовые двойники, параллельные трещинам спайности по (010).
В полевых шпатах широко распространены комплексные двойники, для изучения которых Варданянцем разработана специальная теория “двойниковых триад”.
Структурное объяснение двойникованию дано Тэйлором с соавтарами на примере ортоклаза. Двойники связываются через общие для обоих сдвойникованных индивидов атомы кислорода, и благодаря тому, что они находятся на общих элементах симметрии, как бы продолжается рост единого монокристалла (в ориентировке каждого из сдвойникованных индивидов). При этом не происходит разрыва или существенного искажения четверных колец из [(Si,Аl)O 4 ]-тетраэдров в каркасе структуры. В манебахских двойниках плоскости симметрии (010) в обоих индивидах совпадают, а общие атомы кислорода O(Al) лежат на общих осях вращения. В бавенских двойниках общие атомы кислорода O(А2) находятся на плоскостях симметрии (010) или отклоняются от них всего на 0,2 А, а сами плоскости симметрии в двойниковых индивидах ориентированы под углом 90°. В карлсбадских двойниках два общих атома кислорода O(Al) и O(А2) лежат соответственно на оси вращения и плоскости симметрии (010) одного из индивидов, а другая пара общих атомов O(Аl) и O(А2) - на оси и плоскости (010) второго индивида. Поскольку атом O(Al) на высоте 4,7 А в двойнике и в монокристалле находится в одной и той же позиции (цепи Si-O-Si-O в двойнике отличаются от конфигурации в монокристалле только незначительным разворотом атомов кислорода вокруг атомов кремния в - и -тетраэдрах на высотах 4,1 и 5,05 А), образуются двойники срастания (“контактные двойники”) по плоскости (010). Однако так как она одновременно является и плоскостью симметрии, то возможны “правые” и “левые” двоиники. А поскольку ту же позицию занимают атомы O(Al) на высоте 1,8 А в цепи Si-O-Si-O второго двойникового индивида, в данном случае возможны также и двойники “прорастания”.


Альбитовые и периклиновые двойники в триклинных полевых шпатах, согласно Тэйлору с соавторами получаются соответственно отражением в плоскости (010) или вращением вокруг оси , которая близка к перпендиулярно (010). Поэтому (особенно при полисинтетическом двойниковании или при одновременном альбит-периклиновом двойниковании) двойник повышает свою симметрию до моноклинной. Для альбит-периклиновых двойников в микроклине (“М”-двойники, “микроклиновая” решетка) это является доказательством образования его из первично-моноклинного полевого шпата в результате твердофазовых превращений. В моноклинных полевых шпатах альбитовые и периклиновые двойники невозможны, так как = перпендикуляру (010).

Агрегаты.

Физические свойства

Оптические

Цвет. Окраска полевых шпатов разнообразная, как правило, светлая: белая, желтоватая, зеленоватая, красноватая, коричневатая. Зеленые и голубовато-зеленые разности носят название амазонита. Описаны янтарно-желтые железистые полевые шпаты.

Прозрачность. Прозрачные, водяно-прозрачные.

Показатели преломления

Ng = , Nm = и Np =

Механические

Твердость. 6-6,5.

Плотность. 2,54-2,57 для калиевых полевых шпатов, 2,62-2,65 для альбита, 2,74-2,76 для анортита, до 3,4 для цельзиана. Промежуточные значения - для K,Na- и Ca,Na-полевых шпатов.

Спайность. Все полевые шпаты имеют спайность в двух направлениях - под углом 90° или незначительно отличающемся от прямого (20" - в микроклине, 3,5-4°- в плагиоклазах), как правило, совершенную по (001) и совершенную или хорошую по (010). В этих направлениях разрывается наименьшее число тетраэдрических связей на единицу площади; при этом рвутся только связи между цепочками тетраэдров, но сохраняются четверные кольца.

Химические свойства

Полевые шпаты кислотоупорны, не растворяются в кислотах, кроме HF (К-полевые шпаты и альбит), или легко (анортит) или с трудом (основные плагиоклазы) разлагаются в концентрированной НСl с выделением студенистого осадка кремнезема.

Прочие свойства

Некоторые полевые шпаты обладают способностью опалесценции (адулярисценции), авантюрисценции или лабрадорисценции, которые в отечественной литературе обобщенно принято называть иризацией. Опалесценция дает мерцание в голубоватых, зеленоватых, жемчужно-белых и бледно-желтых тонах в K,Na-полевые шпаты. (криптопертитах) (лунные камни) и олигоклазах (беломориты) или переливчатую игру света в голубовато-сиреневых или серо-синих тонах, напоминающую отлив перьев на шее голубя (олигоклазы-перистериты), и вызвана пертитовым строением щелочных полевых шпатов или аналогичным явлением фазового распада в олигоклазах. Лабрадорисценция - аналогичное явление в лабрадорах (один из синонимов лабрадора - тавусит, от персидского “тавуси” - павлин). Авантюрисценция- яркое свечение минерала точечными бликами в оранжево-красных, ярко- желтых и малиновых тонах (солнечные камни), вызванное отражением света от мелких рассеянных пластинок гематита (в К-полевых шпатах, альбите или олигоклазе), ильменита или самородной меди (в лабрадорах).

Искусственное получение минерала

Синтез щелочных полевых шпатов состава (Na, К, Rb, NH 4 )[(Al, Ga, Fe, B)(Si, Ge) 3 O 8 ] осуществляется обычно из стекол стехиометричного состава сухим (при температуре 700-1000°) или гидротермальным (например, 550°, 1 кбар, 140 ч) путем. Впервые искусственные аналоги полевых шпатов составов NaGaSi 3 O 8 , NaAlGe 3 O 8 , NaGaGe 3 O 8 (триклинные) и KGaSi 3 O 8 , KAlGe 3 O 8 , KGaGe 3 O 8 (моноклинные) получены в , моноклинный RbAlSi3Og - в . Полевой шпат состава NaFeGe 3 O 8 не удалось синтезировать (вместо него в гидротермальных условиях кристаллизовался пироксен состава NaFe, а вместо CsAlSi 3 O 8 - поллуцит. Предполагалось, что Cs-noлевые шпаты не могут существовать из-за слишком большого размера атома Cs, так же как и Li-полевые шпаты, но, наоборот, из-за слишком маленького размера атома Li (Smith, Brown, 1988). Однако моноклинный CsAlSi 3 O 8 все же удалось получить ионным обменом между анальбитом или санидином и расплавом соли CsCl. Аналогичным путем были синтезированы полевые шпаты лития, водорода и серебра: LiAlSi 3 O 8 , HAlSi 3 O 8 и AgAlSi 3 O 8 .

Синтезированы также полевые шпаты состава K.

Диагностические признаки

Ортоклазы ассоциируются с кварцем, кислым плагиоклазом, мусковитом , биотитом и роговой обманкой . Анортоклазы - Ti-авгитом, апатитом , ильменитом . Плагиоклазы - спессартин , родонит , Mn - эпидот , санборнит, джиллеспит.

Происхождение и нахождение

Полевые шпаты являются главными породообразующими минералами магматических, метаморфических, ряда осадочных пород, пегматитов, метасоматитов и гидротермальных жил.

Полевые шпаты, будучи одними из главных породообразующих минералов, кристаллизуются следующим образом:
1. Из магматических расплавов гранитного, сиенитового, диоритового и габброидного состава.

2. В ходе постмагматических процессов (главным образом кислые плагиоклазы и щелочные полевые шпаты) - из пегматитовых расплавов, гидротермальных растворов, при процессах грейзенизации.

3. Путем ионного обмена в кристаллических сланцах (хлоритовые и слюдистые сланцы, слюдистые гнейсосланцы и гнейсы различных типов) как продукты бластеза (греч. «бластос» - росток, зародыш, почка) при средних температурах порядка нескольких сотен градусов (из твердого субстрата), т. е. при перекристаллизации вещества в твердом состоянии.

Разнообразие химического состава полевых шпатов послужило основой для классификации изверженных горных пород. В общем составе земной коры плагиоклазы занимают около 40%. Кислые плагиоклазы являются составными частями континентальных масс гранитного состава (сиаль); основные плагиоклазы входят в состав базальтово-габброидного нижнего слоя земной коры (оима).

Санидины характерны для кислых и щелочных вулканических пород: риолитов, трахитов, фонолитов и интрузий неглубокого залегания. Считается, что они гомогенны, но современные методы исследования показывают, что в большинстве они являются санидин-криптопертитами. В ультракремнекислых породах, таких как обсидианы и риолиты, могут образовывать сферолиты в срастании с кристобалитом и пучки игольчатых кристаллов. В метаморфических породах образуются в условиях санидиновой фации метаморфизма при высокой температуре и низком давлении. Иногда устанавливаются как аутигенные образования в осадочных породах.


Ортоклазы характерны для кислых и щелочных плутонических и вулканических пород, а также пегматитов в этих породах. Они типичны для метаморфических пород высокой степени метаморфизма, контактово-метасоматических образований. В случае высокого содержания натриевого компонента обычно представляют собой крипто- или микропертиты. Образуются в гидротермальных альпийских жилах (адуляр). Характерны для осадочных пород в зонах материкового сноса (аркозовые песчаники) и аутигенных новообразований в осадках разного состава (в том числе карбонатных).
Микроклин является обычным минералом плутонических фельзитовых (без вкрапленников) пород: гранитов, гранодиоритов, сиенитов и простых и сложных пегматитов в этих породах в ассоциации с кварцем, кислым плагиоклазом, мусковитом, биотитом и роговой обманкой. Характерен для метаморфических пород амфиболитовой фации и фации зеленых сланцев. Так же как и ортоклаз, является обычным обломочным минералом в детритовых осадочных породах, но может возникать и как аутигенное образование.
Высоконатриевые K,Na-полевые шпаты (анортоклазы) типичны для вулканических и гипабиссальных пород, сформировавшихся в условиях подъема температуры. Часто образуется в периферических каемках порфировых вкрапленников олигоклаза в щелочных сиенитах (ларвикиты и др.) или выделяется в виде гомогенного K,Ca,Na-полевые шпаты. (тройного). Обычно является криптопертитом. Ассоциирует с Ti-авгитом, апатитом, ильменитом.
Плагиоклазы широко распространены почти во всех типах изверженных и метаморфических пород и некоторых осадочных отложениях. Альбит и олигоклаз характерны для кислых пород: гранитов, гранодиоритов, риолитов, сиенитов, гранитных и сиенитовых пегматитов. Андезин типичен для пород средней кремнекислотности. Лабрадор и битовнит обычны в основных породах: - габброидах и базальтах - и являются главным минералом анортозитов. Анортит менее распространен и появляется в аномальных основных и ультраосновных породах. В метаморфических породах распространены обычно кислые и промежуточные плагиоклазы с содержанием An-компонента менее 50%, но содержание Са растет в породах более высокой степени метаморфизма. Анортит присутствует в скарнах и других контактово-метаморфизованных карбонатных породах. В осадочных породах плагиоклазы обычно присутствуют в виде обломочных зерен, но альбит часто возникает в них как аутигенное новообразование при диагенезе осадков.
Цельзиан характерен для метаморфических пород амфиболитовой фации метаморфизма, богатых Mn и Ва, где обычно постепенно переходит в гиалофан. В парагенезисе с ними типичны спессартин, родонит, Mn-эпидот, санборнит, джиллеспит и др. Бадингтонит - редкий минерал, образующийся из МН 4 - содержащих грунтовых вод. Установлен в ртутных киноварных рудах, породах фосфорной формации, в горючих сланцах. Образует псевдоморфозы по кислому плагиоклазу. Ридмерджнерит - редкий минерал, образующийся при обогащении пород бором. Установлен как аутигенный минерал в черных горючих сланцах и бурых доломитах , а также в щелочных породах осадочной формации Грин Ривер в США и щелочных пегматитах Дараи-Пиеза в Таджикистане.

Практическое применение

Полевые шпаты имеют важное практическое значение. Полевошпато-вое сырье используется в разных отраслях промышленности в качестве флюсующего, глиноземистого, щелочного или глиноземисто-щелочного компонентов, а также инертных наполнителей. Предпочтительны полевош-патовые породы с содержанием К 2 O + Na 2 Oболее 7 мас.%, СаО + MgO не более 2, Аl 2 O 3 более 11 и SiO 2 63-80%. Поэтому в качестве сырья используются в основном кислые (реже средние, щелочные) алюмосиликатные магматические, метаморфические или осадочные породы полевошпатового, кварц-полевошпатового, каолинит-полевошпат-кварцевого или нефелин-полевошпатового состава. Основные и ультраосновные породы практически не используются.
Общемировые запасы и ресурсы полевошпатового сырья не оценены. В России в настоящее время они составляют 115 млн т (52% запасов стран СНГ); из них 88 млн т (76%) приходится на гранитные пегматиты. Мировая добыча полевошпатового сырья составляет 5 млн т/год: Италия - 1500, США - 700, Франция - 400, Германия - 330, Таиланд - 330, Южная Корея - 240, Мексика - 200 тыс. т. В мировой добыче стран СНГ - 10-15%, из которых доля России около 48%, Казахстана - 30, Украины - 15, Узбекистана - 7%. Основной объем добычи в России приходится на Карелию и Мурманскую область.
По содержанию кварца сырье подразделяется на собственно полевош-патовое (кварца меньше 10%) и кварц-полевошпатовое (кварца больше 10%); по соотношению щелочей - на высококалиевое (“калиевый модуль” = K 2 O/Na 2 O > 3 мас. %), используемое в электротехнической и абразивной промышленности, а также для производства сварочных электродов, калиевое (“модуль” не менее 2), применяемое в электротехнической и фарфорофаянсовой промышленности, калиево-натриевое (“модуль” не менее 0,9), используемое для производства строительной керамики, и натриевое (“модуль” менее 0,9 или не нормирован), применяемое в стекольной промышленности и для производства эмалей типа “стекловидного фарфора”. Если присутствует нефелин, выделяют нефелин-полевошпатовое сырье.
Высококалиевые полевошпатовые материалы (с высоким “калиевым модулем” - выше 4, низким содержанием СаО и MgO - не более 1,5% и FeO и Fe 2 O 3 - не выше 0,15-0,30%) используются в электрокерамическом производстве для изготовления высоковольтных фарфоровых изоляторов, в качестве плавня и сцепляющей массы для производства шлифовальных и точильных абразивных изделий, для керамической обмазки (шлакообразующих изделий, стабилизирующих дугу) в производстве сварочных электродов, в фарфоро-фаянсовом производстве для получения прозрачных глазурных покрытий (“модуль” не менее 3). Полевошпатовые и кварц-полевошпатовые материалы с высоким “калиевым модулем” (2-3 и выше 3 для изделий высших марок) применяют в керамической промышленности в качестве плавня (флюса) для производства тонкой керамики (хозяйственный и художественный фарфор, электротехнический фарфор), калиево-натриевые кварц-полевошпатовые материалы (с низким “модулем” до 0,9) - для производства строительной керамики (санитарно-керамические изделия, облицовочные и отделочные плитки), а натриевые полевые шпаты (с ненормируемым “модулем”) - для производства низкотемпературного фарфора. Кварц- полевошпатовые и нефелин-полевошпатовые материалы используют также в качестве шихты для производства электровакуумного и высокосортного технического стекла, листового технического и оконного стекла и изделий из темно-зеленого и тарного стекла. Натриевые полевошпатовые материалы применяются для эмалевых покрытий чугунных и железных изделий, для увеличения их вязкости и химической стойкости.

Полевые шпаты используются в качестве наполнителя в лакокрасочной промышленности (получаемые краски более стойки, чем с карбонатным наполнителем, к воздействию кислотных дождей и солнечному свету и применяются для наружных работ), в резиновом производстве, при изготовлении опалесцирующего стекла, изразцов, черепицы, бетона, цемента, в стоматологии для производства искусственных зубов и др.
Новыми областями применения полевых шпатов (главным образом из низкокачественных и некондиционных полевошпатовых и нефелин-полевошпатовых материалов, что важно при решении экологических проблем и комплексного освоения месторождений) являются производство стеклокри-сталлических материалов (ситаллы и шлакоситаллы, используемые в строительстве, химической, горнодобывающей и электротехнической промышленности), теплоизоляционных материалов (пеностекло, применяемое в строительстве для изоляции стен и полов, холодильников и др.), а также вя-жущих материалов (пуццол и другие новые цементы), получаемых из сиштофа (стеклоподобной массы с примесью микроклина, эгирина и других со-путствующих минералов) и сульфатно-щелочных удобрений, получаемых из фосфогипса, - промышленных отходов, образующихся при кислотной (с H 2 SO 4 ) переработке хибинских апатит-нефелиновых руд в ходе получения фосфорных удобрений. Нефелин-полевошпатовые материалы используются для получения ангоба - керамической массы, припекаемой в виде глазурий к изделиям из легкого бетона (стеновым панелям и др.).

В последние годы к полевым шпатам привлечено внимание в связи с проблемой захоронения радиоактивных отходов. Вместо распространенной технологии остекловывания предложена фиксация радиоизотопов 90 Sr, 134 Cs и 137 Cs в полиминеральных матричных материалах, состоящих из Sr-содер-жащего полевого шпата с кварцевой оболочкой или поллуцита с оболочкой из К,Na-полевого шпата; эти материалы более устойчивы к выщелачиванию, чем стекла.

Полевые шпаты – это распространенная группа породообразующих минералов, поделенных на отдельные подгруппы в зависимости от происхождения и состава: плагиоклазы, калиевые и калиево-бариевые.

Все виды полевых шпатов в чистом виде бесцветны, однако присутствующие в них примеси могут окрашивать камни в разные цвета. Ортоклазам свойственны розовые, белые, красные и желтые тона. Микроклин обладает как красно-оранжевыми цветами солнечного камня, так и серо-зелеными оттенками, свойственными амазонитам. Лабрадор окрашен в сине-черные цвета, однако радужный отлив, присущий камню, включает в себя множество оттенков.

Химический состав камней, входящих в группу полевых шпатов, отличается, однако физические свойства сходны. Всем представителям этой группы присуще формирование двойниковых кристаллов, совершенная спайность, стеклянный или перламутровый блеск, ярко-выраженный эффект иризации и средний показатель твердости.

Человечеству полевые шпаты известны издавна. В переводе с немецкого языка название группы минералов переводится как «полевой» и «раскалывающийся на пластины». Разновидности камней были освоены и изучены в разные вековые вехи, однако их использовали для изготовления украшений еще в странах древнего Востока и Египта.

Виды полевого шпата

По химическому составу, структурным особенностям и происхождению выделяют несколько подгрупп полевых шпатов:

  • калиевые;
  • плагиоклазы (натриево-кальциевые);
  • калиево-бариевые.

Калиевые шпаты имеют магматическое происхождение и образуются в кислой среде таких пород, как гранит или гранодиорит. Они не так подвержены разрушению, как плагиоклазы, однако в процессе выветривания и гидротермального воздействия могут преобразовываться в минералы, входящие в группу каолинита. К калиевым шпатам относятся:

  • санидины;

Плагиоклазы имеют сходный натриево-кальциевый состав, триклинную структуру кристаллов, а также обладают эффектом двойникования. К их числу относят следующие виды минералов:

  • андезин;
  • олигоклаз;
  • битовнит;

Калиево-бариевые шпаты включают в себя малораспространенный минерал цельзиан. Камни, окрашенные в кремовые оттенки, являются ценными коллекционными экземплярами.

Происхождение и месторождения минерала

В общем мировом объеме залежей горных пород и минералов, добываемых в земной коре планеты, доля полевого шпата доходит до 60%. Преимущественно он имеет магматическое происхождение, однако также ему свойственны метаморфические процессы. Месторождения полевых шпатов расположены по всей материковой части планеты.

Масштабные разработки микроклина ведутся в России, Казахстане, Украине, Польше, Швейцарии, Германии, на территории Японии, США и Мадагаскаре. Ювелирные кристаллы амазонита добывают в Бразилии, Канаде, Индии и странах Африки.

Залежами лабрадора богата Канада, Украина, окрестности Тибета в Китае, Индия, Германия и земли Гренландии. Дорогие качественные образцы добывают в Финляндии.

Разработки залежей ортоклаза ведутся в России, Индии, Австралии, США, Бразилии, Мексике, Италии, Германии и Кыргызстане.

Основные месторождения адуляра расположены в Индии, США, Шри-Ланке, Швейцарии и Таджикистане.

Магические свойства полевого шпата

Лабрадор

Минералы этой группы издавна использовались магами, колдунами и медиумами для перемещений во времени, развития своих способностей, познания вселенских учений и общения с потусторонними мирами.

Самыми сильными энергетическими свойствами наделен лабрадор. Камень яркой окраски развивает в хозяине скрытые способности, усиливает интуитивные чувства и дает возможность научиться предвидению. Лабрадор предназначен для зрелых людей, которые, в отличие от молодых, умеют управлять эмоциями и поступками.

Оберегами семейного счастья, любви, покоя и уюта домашнего очага выступают амазонит и графический пегматит из группы микроклинов, а также ортоклаз и .

Ортоклаз настолько чувствителен к обстановке в доме, что изменением окраски может сигнализировать о грядущих переменах, разрыве отношений или супружеской измене.

Амазонит

Камни, относящиеся к полевым шпатам, обладают широким спектром лечебного воздействия на человеческий организм. Они излечивают множество недугов, однако для этого нужно выбрать конкретный камень с наиболее подходящими полезными свойствами.

Амазонит и гелиолит, относящиеся к микроклину, благоприятно влияют на кроветворную и сосудистую систему, улучшают состояние кожных покровов и нормализуют психическое состояние, избавляя от нервного перенапряжения и депрессии.

Лабрадор из группы плагиоклазов помогает бороться с болезнями опорно-двигательного аппарата и мочеполовой системы. Сила минерала позволяет избавиться от бессонницы и обрести душевное спокойствие.

Ортоклазы и адуляры являются эффективным средством лечения эпилепсии и психических расстройств. Адуляры также используют при лечении онкологии традиционными методами в качестве вспомогательного средства.

Для профилактики болезней почек и печени используют целебные свойства альбита. Камень андезин, обладающий теплыми переливающимися оттенками, является мощным антидепрессантом.

Полевой шпат и его применение

Колье из ограненного адуляра

Являясь одной из самых распространенных пород на планете, полевые шпаты активно используются в промышленных отраслях. Основной сферой его применения является керамическая промышленность, в которой полевой шпат используется в качестве плавня. Из него изготавливают керамическую облицовочную плитку, стекло, посуду, элементы интерьера, а также изделия и материалы, применяемые в области медицины. Китайцы с древних времен вводят полевой шпат в глину, из которой впоследствии изготавливают фарфор.

Из полевого шпата добывают рубидий, а также извлекают содержащиеся в нем примеси. Мелкодисперсный порошок используют при изготовлении зубных паст и косметических веществ в качестве абразивного вещества.

Прозрачные и полупрозрачные кристаллы, обладающие эффектом иризации, используются в ювелирном, коллекционном и поделочном деле. Их гранят кабошоном и вставляют во все виды украшений. Металл для оправы подбирают по цвету камня: кристаллы, окрашенные в теплые оттенки, вставляют в желтое или красное золото; камни холодных тонов оправляют в серебро, белое золото или мельхиор.

Знаки зодиака

Песчаник – популярный строительный облицовочный камень Авантюрин – благородный кварц Пирит – огненный камень
Сапфир – свойства камня

Для любых предложений по сайту: [email protected]